Scope of a variable The scope of a vriable is the part of the program for which the declaration is in effect. In Java, the scope of such a variable is from its declaration to the end of the method. ### Lifetime of a variable The lifetime of a variable is the time period in which the variable has valid memory. In Java, the lifetime of a variable is the period of time beginning when the method is entered and ending when execution of the method terminates. ## Types of Scope of a varibale: - Local scope: "visible" within function or statement block from point of declaration until the end of the block. - Global scope: visible everywhere unless "hidden". - Class scope: "seen" by class members. - Namespace scope: visible within namespace block. - File scope: visible within current text file. # Type with lifetime of variable: - Static: A static variable is stored in the data segment of the "object file" of a program. Its lifetime is the entire duration of the program's execution. - Automatic: An automatic variable has a lifetime that begins when program execution enters the function or statement block or compound and ends when execution leaves the block. Automatic variables are stored in a "function call stack". • Dynamic: The lifetime of a dynamic object begins when memory is allocated for the object (e.g., by a call to malloc() or using new) and ends when memory is deallocated (e.g., by a call to free() or using delete). Dynamic objects are stored in "the heap". #### **Related Posts:** - 1. Sequence Control & Expression | PPL - 2. PPL:Named Constants - 3. Parse Tree | PPL | Prof. Jayesh Umre - 4. Basic elements of Prolog - 5. Loops | PPL | Prof. Jayesh Umre - 6. Subprograms Parameter passing methods | PPL | Prof. Jayesh Umre - 7. Programming Paradigms | PPL | Prof. Jayesh Umre - 8. Subprograms Introduction | PPL | Prof. Jayesh Umre - 9. Phases of Compiler | PPL | Prof. Jayesh Umre - 10. Parse Tree | PPL - 11. Influences on Language design | PPL | Prof. Jayesh Umre - 12. Fundamentals of Subprograms | PPL | Prof. Jayesh Umre - 13. Programming Paradigm - 14. Influences on Language Design - 15. Language Evaluation Criteria - 16. OOP in C++ | PPL - 17. OOP in C# | PPL - 18. OOP in Java | PPL - 19. PPL: Abstraction & Encapsulation - 20. PPL: Semaphores - 21. PPL: Introduction to 4GL - 22. PPL: Variable Initialization - 23. PPL: Conditional Statements - 24. PPL: Array - 25. PPL: Strong Typing - 26. PPL: Coroutines - 27. PPL: Exception Handler in C++ - 28. PPL: OOP in PHP - 29. PPL: Character Data Type - 30. PPL: Exceptions - 31. PPL: Heap based storage management - 32. PPL: Primitive Data Type - 33. PPL: Data types - 34. Programming Environments | PPL - 35. Virtual Machine | PPL - 36. PPL: Local referencing environments - 37. Generic Subprograms - 38. Local referencing environments | PPL | Prof. Jayesh Umre - 39. Generic Subprograms | PPL | Prof. Jayesh Umre - 40. PPL: Java Threads - 41. PPL: Loops - 42. PPL: Exception Handling - 43. PPL: C# Threads - 44. Pointer & Reference Type | PPL - 45. Design issues for functions - 46. Parameter passing methods - 47. Fundamentals of sub-programs - 48. Subprograms - 49. Design issues of subprogram - 50. Garbage Collection - 51. Issues in Language Translation - 52. PPL Previous years solved papers - 53. Type Checking | PPL | Prof. Jayesh Umre - 54. PPL RGPV May 2018 solved paper discussion| Prof. Jayesh Umre - 55. PPL Viva Voce - 56. PPL RGPV June 2017 Solved paper | Prof. Jayesh Umre - 57. Concurrency - 58. Basic elements of Prolog - 59. Introduction and overview of Logic programming - 60. Application of Logic programming - 61. PPL: Influences on Language Design - 62. Language Evaluation Criteria PPL - 63. PPL: Sequence Control & Expression - 64. PPL: Programming Environments - 65. PPL: Virtual Machine - 66. PPL: Programming Paradigm - 67. PPL: Pointer & Reference Type - 68. try-catch block in C++