
Self Attention in Transformer

EasyExamNotes.com Self Attention in Transformer

!
� What is Self-Attention?

Self-attention is the core mechanism in the Transformer architecture (Vaswani et al., 2017)
that allows the model to weigh the importance of different words in a sequence when
encoding a particular word.

In simpler terms:

For example, in the sentence: “The cat sat on the mat because it was tired,” the word “it”
should pay more attention to “cat” (not “mat”) to understand what “it” refers to.

It helps the model figure out which words to pay more attention to when processing a specific
word.

Lets make it more simple, imagine you’re reading a sentence and trying to understand what
each word means in context.

For example:

Self Attention in Transformer

EasyExamNotes.com Self Attention in Transformer

“The cat sat on the mat because it was tired.”

When you read “it”, your brain automatically connects it to “cat” — you pay attention to the
right part of the sentence to understand the meaning.

That’s basically what self-attention does inside a Transformer:
� it helps the model figure out which other words are important for understanding each word.

� How Does Self-Attention Work?

For each word in the input sequence:

Compute three vectors:1.
Query (Q)
Key (K)
Value (V)

These are obtained by multiplying the word embedding with learned weight matrices.
Calculate attention scores:2.

Compute similarity between Query of the current word and Key of all words.
This gives a score indicating how much focus to put on each word.

Normalize scores:3.
Apply softmax to turn scores into probabilities (attention weights).

Compute weighted sum:4.
Multiply attention weights with Value vectors of all words and sum them up.
This gives the final representation of the current word, enriched by its context.

Self Attention in Transformer

EasyExamNotes.com Self Attention in Transformer

Lets simple it, for every word (or token) in a sentence:

Look around → Each word “looks” at the other words in the sentence.1.
Decide what’s important → The model figures out how strongly each word should be2.
connected to the others.
Mix the information → Each word updates its meaning by blending in information from3.
the words it paid attention to.

So, when the Transformer processes “it”, it “realizes” that “cat” is important, not “mat”.

� Formula (Scaled Dot-Product Attention)

!
Q: Query matrix
K: Key matrix
V: Value matrix
dk​: Dimension of key (used for scaling)

Self Attention in Transformer

EasyExamNotes.com Self Attention in Transformer

� Benefits of Self-Attention

✅ Captures long-range dependencies (no matter how far words are)
✅ Enables parallel processing (unlike RNNs)
✅ It figures out meaning dynamically depending on the sentence.

� Visualization (conceptual)

vbnetCopyEditInput: The cat sat on the mat
Weights: 0.1 0.5 0.2 0.05 0.1 0.05

For the word “cat”, it may pay more attention to itself and nearby words, while “sat” may
look at both “cat” and “mat”.

� Summary in one line

Self-attention helps each word in a sentence understand its meaning by looking at — and
learning from — all the other words.

Let’s focus just on Q (Query):

� What is Query (Q)?

The Query vector is like the “question” that one word asks about how much it should care
about other words in the sentence.

https://easyexamnotes.com/recurrent-neural-network/

Self Attention in Transformer

EasyExamNotes.com Self Attention in Transformer

For each word:

The model generates a Query vector.
This vector is compared against the Key vectors of all words (including itself).
The comparison gives attention scores that tell which words matter most when
understanding this word.

� Simple example

Sentence:

“The cat sat on the mat.”

Let’s say we’re working on the word “cat”.

We create Query(cat) → this is like asking:
“Who in this sentence is important for me to understand my meaning?”

We then compare Query(cat) with Key(The), Key(cat), Key(sat), Key(on), Key(the), Key(mat).
This gives scores like:

The → 0.1
cat → 0.4
sat → 0.3
on → 0.1

Self Attention in Transformer

EasyExamNotes.com Self Attention in Transformer

the → 0.05
mat → 0.05

So, “cat” pays most attention to itself and a little to “sat.”

�️ How is Query created?

For each word: Query=Embedding×WQ

Embedding → the vector representing the word.

WQ → a learned weight matrix.
Result → Query vector.

Let’s focus just on K (Key):

� What is Key (K)?

The Key vector is like a label or tag that tells other words:
� “Here’s the kind of information I carry.”

In the self-attention process, every word has:

A Query → what it wants to know
A Key → what it offers to others
A Value → the actual content it provides

Self Attention in Transformer

EasyExamNotes.com Self Attention in Transformer

� Example in action

Sentence:

“The cat sat on the mat.”

Let’s say the model is working on “cat”:

It has a Query(cat) → asking: “Who is important for me?”

Then, it compares Query(cat) to the Keys of all words:

Key(The)
Key(cat)
Key(sat)
Key(on)
Key(the)
Key(mat)

These Keys are like ID cards saying what each word is about.
By comparing Query to Keys, the model decides which words deserve attention.

�️ How is Key created?

For each word: Key=Embedding×WK

Self Attention in Transformer

EasyExamNotes.com Self Attention in Transformer

Embedding → vector of the word.

WK → learned weight matrix.
Result → Key vector.

� Intuition

✅ Query → What this word is looking for.
✅ Key → What each word offers as a “summary.”
✅ Together → The model measures how well the Query and Key match to decide attention
weights.

Let’s focus just on V (Value):

� What is Value (V)?

The Value vector carries the actual information that will be passed along once attention is
decided.

In simpler words:

The Query figures out what to look for.
The Key explains what each word offers.
The Value provides the actual content that will be mixed into the final output.

So, after the model compares Queries and Keys and decides which words to focus on,

Self Attention in Transformer

EasyExamNotes.com Self Attention in Transformer

� it collects the Values (weighted by the attention scores) to build a richer meaning for each
word.

� Example

Sentence:

“The cat sat on the mat.”

Let’s say we’re focusing on “cat”:

We calculate:
Query(cat)
Compare Query(cat) with Key(The), Key(cat), Key(sat), Key(on), Key(mat)
Get attention scores → say, 0.1, 0.5, 0.3, 0.05, 0.05

Finally:

We take the Values from each word → Value(The), Value(cat), Value(sat), Value(on),
Value(mat)
Multiply them by the attention scores
Sum them → this gives the updated, context-aware meaning of “cat.”

�️ How is Value created?

For each word: Value=Embedding×WV

Self Attention in Transformer

EasyExamNotes.com Self Attention in Transformer

Embedding → vector of the word.

WV → learned weight matrix.
Result → Value vector.

� Intuition

✅ Query → “What am I looking for?”
✅ Key → “What can I offer to others?”
✅ Value → “Here’s my full info if you decide I matter.”

List of Popular Self-Attention Models

Model D (Embedding
Size) # Heads

Head
Dim (D /
heads)

Notes

GPT-2 Small 768 12 64 117M parameters

GPT-2 Medium 1024 16 64 345M parameters

GPT-2 Large 1280 20 64 762M parameters

GPT-2 XL 1600 25 64 1.5B parameters

GPT-3 (175B) 12288 96 128 Huge, closed weights

GPT-4 (est.) ~12288–32768 ? ? Specs not fully disclosed

BERT Base 768 12 64 110M parameters

Self Attention in Transformer

EasyExamNotes.com Self Attention in Transformer

Model D (Embedding
Size) # Heads

Head
Dim (D /
heads)

Notes

BERT Large 1024 16 64 340M parameters

DistilBERT 768 12 64 Smaller BERT

RoBERTa Base 768 12 64 BERT optimized

RoBERTa Large 1024 16 64 More training data

T5 Small 512 8 64 Text-to-text model

T5 Base 768 12 64 Encoder-decoder model

T5 Large 1024 16 64

XLNet Base 768 12 64 Permutation-based

XLNet Large 1024 16 64

ALBERT Base 768 12 64 Shared weights

ALBERT Large 1024 16 64

TinyBERT 312 12 26 For mobile devices

MobileBERT 512 4 128 Highly efficient

Longformer 768–1024 12–16 64 Long sequence support

ViT-B/16 (Vision
Transformer) 768 12 64 Used for image patches

ViT-L/32 1024 16 64 Larger image model

https://easyexamnotes.com/what-is-training-data-in-machine-learning/

Self Attention in Transformer

EasyExamNotes.com Self Attention in Transformer

Observations

Most models keep head size at 64 for stability and optimization.
D is typically divisible by # heads (to avoid errors in attention reshaping).
Bigger models (GPT-3, GPT-4) scale up both D and # heads heavily.
Lightweight models (MobileBERT, TinyBERT) trade off D and # heads for speed and
memory.

Q. What is learned weight matrix ?

Related posts:

Transformer Architecture in LLM1.
Input Embedding in Transformers2.
Positional Encoding in Transformers3.
Multi-Head Attention in Transformers4.
Why 512 Dimensions in Transformer Model Architecture5.

http://6pp.131.mytemp.website/what-is-learned-weight-matrix/
https://easyexamnotes.com/transformer-architecture-in-llm/
https://easyexamnotes.com/input-embedding-in-transformers/
https://easyexamnotes.com/positional-encoding-in-transformers/
https://easyexamnotes.com/multi-head-attention-in-transformers/
https://easyexamnotes.com/why-512-dimensions-in-transformer-model-architecture/

