A set is a collection of definite well defined objects.
A set is a collection of objects which are distinct from each other.

A set is usually denoted by capital letter, i.e, A, B, S, T, G etc.
A set elements are denoted by small letter, i.e, a, b, s, t etc.

CONSTRUCTION OF SET:

In construction of set, two methods are commonly used-

1) Roster Method (Enumeration): In this method we prepare a list of objects forming the set, writing the elements one after another between a pair of curly brackets.
For example:
$A=\{a, b, c, d\}$.
2) Description Method: In this method we describe the set in symbolic language.

For example:
A set of integer numbers which is divisible by 3 is written as,
$A=\{x: x$ is an integer divisible by 3$\}$

TYPES OF SET:

1) Singleton set: If a set consisting only 1 element is known as singleton set.

For example:
$A=\{a\}$.
2) Finite set: If a set consisting finite number of elements is known as finite set. For example:
$A=\{2,4,6,8\}$.
3) Infinite set: If a set consisting infinite number of elements is known as infinite set.

For example-
The set of all natural numbers.
$A=\{1,2,3, \ldots .$.
4) Equal sets: Two sets A and B consisting of the same elements is known as equal set. For example:
$A=\{a, b, c, d\}$ and
$B=\{a, b, c, d\}$
5) Empty set: If a set consisting no elements is known as empty set or null set or void set. For example:
$A=\{\varnothing\}$
6) Subset: Suppose A is a given set, and any set B exist exist whose elements are also an element of A, than B is called subset of A.
For example:
$A=\{1,2,3,4,5,6,7,8\}$ and $B=\{2,4,6,8\}$
Than, $B \subseteq A$. (read as B is the subset of A)

Now take another example;
$A=\{1,2,3,4,5,6,7,8\}$ and $B=\{1,2,3,4,5,6,7,8\}$
Than, $B \subseteq A$. (read as B is the subset of A)
7) Proper Subset: If B is the subset of A, and $B \neq A$, then B is proper subset of A. For example:
$A=\{1,2,3,4,5,6,7,8\}$ and $B=\{2,4,6,8\}$
Than, $B \subset A$. (read as B is the proper subset of A)
8) Power set: The set of all subset of a set A, is known as power set of A.

For example:
$A=\{a, b, c\}$
Than
Power set, $P(A)=\{\{\varnothing\},\{a\},\{b\},\{c\},\{d\},\{a b\},\{a c\},\{a d\},\{b c\},\{b d\},\{c d\},\{a b c\}\}$

Related posts:

1. Mathematical induction
2. Relation
3. Net 34
4. prove that- $A X(B \cap C)=(A X B) \cap(A X C)$
5. Prove that- $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
6. prove that $-(A \cap B) X(C \cap D)=(A X C) \cap(B X D)$
7. Show that- $(P \cap Q) X(R \cap S)=(P X R) \cap(Q X S)$
8. Binary operations
9. Algebraic structure
10. Group
11. Show that (..., $-4,-3,-2,-1,0,1,2,3,4, \ldots\}$ is group
12. Show that $a * b=b * a$
13. if $a * c=c^{*} a$ and $b^{*} c=c * b$, then $(a * b) * c=c^{*}(a * b)$
14. Undirected Graph and Incident Matrix
15. Prove the following by using the principle of mathematical induction for all $n \in N, 1^{3}+$ $2^{3}+3^{3}+\ldots+n^{3}=[n(n+1) / 2]^{2}$
16. Prove that $\mathrm{G}=\{-1,1, \mathrm{i},-\mathrm{i}\}$ is a group under multiplication.

EasyExamNotes.com

17. Hasse diagram for the "less than or equal to" relation on the set $S=\{0,1,2,3,4,5\}$
