Show that-

 $(P \cap Q)X(R \cap S) = (PXR) \cap (QXS)$

For some arbitrary sets P, Q, R and S

Consider(x,y)

 $(x,y) \in (P \cap Q)X(R \cap S)$

 $x \in (P \cap Q) \land y \in (R \cap S)$

 $(x \in P \text{ and } x \in Q) \land (y \in R \text{ and } y \in S)$

 $(x \in P \land y \in R)$ and $(x \in Q \land y \in S)$

 $(x,y)\in (P \land R)$ and $(x,y)\in Q \land S)$

 $(x,y) \in ((P \land R) \text{ and } (Q \land S))$

 $(x,y) \in ((P \times R) \cap (Q \times S))$

 $(PXR) \cap (QXS)$

Related Posts:

- 1. SET
- 2. Mathematical induction
- 3. Relation
- 4. Net 34
- 5. prove that- $AX(B \cap C) = (AXB) \cap (AXC)$
- 6. Prove that- An(BuC) = (AnB) u (AnC)
- 7. prove that -(AnB)X(CnD) = (AXC)n(BXD)
- 8. Binary operations
- 9. Algebraic structure
- 10. Group

- 11. Show that (..., -4, -3, -2, -1, 0, 1, 2, 3, 4,...} is group
- 12. Show that a*b=b*a
- 13. if a*c = c*a and b*c = c*b, then (a*b)*c = c*(a*b)
- 14. Undirected Graph and Incident Matrix
- 15. Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$, $1^3 + 2^3 + 3^3 + ... + n^3 = [n (n + 1)/2]^2$
- 16. Prove that $G = \{-1,1,i,-i\}$ is a group under multiplication.
- 17. Hasse diagram for the "less than or equal to" relation on the set $S = \{0,1,2,3,4,5\}$