
Sorting Algorithms

EasyExamNotes.com Sorting Algorithms

An overview of some commonly used sorting algorithms:

1. Bubble Sort:

Compares adjacent elements and swaps them if they are in the wrong order.
Repeatedly passes through the list until the list is sorted.
Simple to implement but not efficient for large lists.
Time Complexity: O(n^2)

2. Selection Sort:

Divides the list into a sorted and an unsorted portion.
Selects the smallest (or largest) element from the unsorted portion and swaps it with
the first element of the unsorted portion.
Repeats this process until the entire list is sorted.
Time Complexity: O(n^2)

3. Insertion Sort:

Builds the final sorted list one element at a time.
Takes each element from the unsorted portion and inserts it into the correct position in
the sorted portion.
Time Complexity: O(n^2), but efficient for small lists or partially sorted lists.

4. Merge Sort:

Utilizes the divide-and-conquer approach.
Divides the list into smaller sublists, recursively sorts them, and then merges them to



Sorting Algorithms

EasyExamNotes.com Sorting Algorithms

obtain the final sorted list.
Efficient for large lists and guarantees a time complexity of O(n log n) in all cases.
Requires additional space for the merging step.

5. Quick Sort:

Utilizes the divide-and-conquer approach.
Selects a pivot element, partitions the list into two sublists (elements less than the
pivot and elements greater than the pivot), and recursively sorts the sublists.
Efficient for large lists, but can have a worst-case time complexity of O(n^2) if the
pivot selection is unbalanced.
In the average case, it has a time complexity of O(n log n).

6. Heap Sort:

Utilizes a binary heap data structure to sort elements.
Builds a max-heap from the input list and repeatedly extracts the maximum element
to obtain the sorted list.
Has a time complexity of O(n log n) in all cases and is an in-place sorting algorithm.
Requires additional space for the heap structure.

7. Radix Sort:

Sorts elements by processing them digit by digit.
Groups elements based on the value of each digit using counting sort or any stable
sorting algorithm.
Requires a fixed-length representation for elements (e.g., integers or strings).
Time complexity depends on the number of digits and the range of digits.



Sorting Algorithms

EasyExamNotes.com Sorting Algorithms


