EasyExamNotes.com

Sorting Algorithms

An overview of some commonly used sorting algorithms:

1. Bubble Sort:

e Compares adjacent elements and swaps them if they are in the wrong order.
» Repeatedly passes through the list until the list is sorted.

» Simple to implement but not efficient for large lists.

* Time Complexity: O(n"2)

2. Selection Sort:

* Divides the list into a sorted and an unsorted portion.

* Selects the smallest (or largest) element from the unsorted portion and swaps it with
the first element of the unsorted portion.

» Repeats this process until the entire list is sorted.

e Time Complexity: O(n"2)

3. Insertion Sort:

« Builds the final sorted list one element at a time.

» Takes each element from the unsorted portion and inserts it into the correct position in
the sorted portion.

e Time Complexity: O(n"2), but efficient for small lists or partially sorted lists.

4. Merge Sort:

e Utilizes the divide-and-conquer approach.
* Divides the list into smaller sublists, recursively sorts them, and then merges them to

EasyExamNotes.com Sorting Algorithms



EasyExamNotes.com

Sorting Algorithms

obtain the final sorted list.
« Efficient for large lists and guarantees a time complexity of O(n log n) in all cases.
» Requires additional space for the merging step.

5. Quick Sort:

« Utilizes the divide-and-conquer approach.

 Selects a pivot element, partitions the list into two sublists (elements less than the
pivot and elements greater than the pivot), and recursively sorts the sublists.

« Efficient for large lists, but can have a worst-case time complexity of O(n"2) if the
pivot selection is unbalanced.

* In the average case, it has a time complexity of O(n log n).

6. Heap Sort:

« Utilizes a binary heap data structure to sort elements.

* Builds a max-heap from the input list and repeatedly extracts the maximum element
to obtain the sorted list.

» Has a time complexity of O(n log n) in all cases and is an in-place sorting algorithm.

e Requires additional space for the heap structure.

7. Radix Sort:

 Sorts elements by processing them digit by digit.

e Groups elements based on the value of each digit using counting sort or any stable
sorting algorithm.

e Requires a fixed-length representation for elements (e.g., integers or strings).

e Time complexity depends on the number of digits and the range of digits.

EasyExamNotes.com Sorting Algorithms



EasyExamNotes.com

Sorting Algorithms

EasyExamNotes.com Sorting Algorithms



