- 1. A transmitter transmits the frame.
- 2. Transmitter wait for the acknowledgement for fixed period of time.
- 3. On receiving valid frame, receiver send back an acknowledgement for next frame.
- 4. On receiving acknowledgement transmitter transmit next frame.
- 5. If sender not received any acknowledgement within time duration it re-transmit the same frame.
- 6. The rate of transmission depends on the processing power of the receiver.

Example of Stop and Wait protocol

Frame Sender	Frame Receiver
Frame(0) transmitted	Acknowledgement Frame(1)
Frame(1) transmitted	Acknowledgement Frame(2)
Frame(2) transmitted	No Acknowledgement within time
Frame(2) re-transmitted	Acknowledgement Frame(3)

This method is ineffective when the size of the frame is large.

What if the size of the frame is large?

- 1. The transmitter divides large messages into smaller frames.
- 2. Then transmit these smaller frames.

Related posts:

- 1. What is computer network
- 2. Data Link Layer
- 3. Framing
- 4. Byte count framing method
- 5. Flag bytes with byte stuffing framing method
- 6. Flag bits with bit stuffing framing method
- 7. Physical layer coding violations framing method
- 8. Error Control in Data link layer
- 9. Sliding Window Protocol
- 10. One bit sliding window protocol
- 11. A Protocol Using Go-Back-N
- 12. Selective repeat protocol
- 13. Net 10
- 14. Net 9
- 15. Net 47
- 16. Net 43
- 17. OSI vs TCP/IP
- 18. TCP/IP Reference Model
- 19. OSI Reference Model
- 20. Computer Networks Introduction
- 21. Types of Computer Networks
- 22. Network Architectures

- 23. Computer Network Topologies
- 24. LAN and WAN Protocols
- 25. Network Address
- 26. IP Addresses
- 27. Class Full Addressing
- 28. Networking Media
- 29. Networking Devices
- 30. Structured cabling
- 31. Types of connectivities in Computer Networks
- 32. Introduction to Network Operating System(NOS)
- 33. ARP/RARP
- 34. Cooperative Caching