- 1. Which protocol is commonly used for routing between autonomous systems in the Internet?
- a) RIP
- b) OSPF
- c) BGP
- d) TCP

Answer: c) BGP

Explanation: Border Gateway Protocol (BGP) is an exterior gateway protocol used to exchange routing information between different autonomous systems on the Internet.

- 2. What is the concept of a hidden network in BGP?
- a) A network that is not advertised to neighboring routers
- b) A network with limited access permissions
- c) A network with encrypted data transmission
- d) A network that is unreachable due to routing issues

Answer: a) A network that is not advertised to neighboring routers

Explanation: In BGP, a hidden network refers to a network prefix that is not advertised to neighboring routers, often used for internal purposes within an autonomous system.

- 3. Which protocol is an Interior Gateway Protocol (IGP)?
- a) BGP
- b) OSPF
- c) TCP
- d) UDP

Answer: b) OSPF

Explanation: OSPF (Open Shortest Path First) is an Interior Gateway Protocol used for routing within an autonomous system.

- 4. What is the primary function of an Exterior Gateway Protocol (EGP)?
- a) Routing within an autonomous system
- b) Routing between autonomous systems
- c) Routing within a local network
- d) Ensuring data integrity during transmission

Answer: b) Routing between autonomous systems

Explanation: An Exterior Gateway Protocol (EGP) is designed for routing between different autonomous systems.

- 5. Which protocol is an example of an Interior Gateway Protocol that uses distance-vector routing?
- a) OSPF
- b) BGP
- c) RIP
- d) TCP

Answer: c) RIP

Explanation: RIP (Routing Information Protocol) is an Interior Gateway Protocol that uses distance-vector routing to determine the best path to a destination network.

- 6. What is the function of multiplexing in networking?
- a) Ensuring secure data transmission
- b) Combining multiple data streams into a single stream
- c) Managing network congestion
- d) Detecting errors in data transmission

Answer: b) Combining multiple data streams into a single stream

Explanation: Multiplexing is the process of combining multiple data streams into a single stream for transmission over a shared medium.

- 7. Which protocol is responsible for establishing and maintaining reliable connections between hosts on a network?
- a) RIP
- b) OSPF
- c) TCP
- d) UDP

Answer: c) TCP

Explanation: Transmission Control Protocol (TCP) is responsible for establishing and maintaining reliable connections between hosts on a network.

- 8. What is the purpose of the Three-Way Handshake in TCP?
- a) To synchronize sequence numbers
- b) To establish a secure connection
- c) To exchange routing information
- d) To manage congestion control

Answer: a) To synchronize sequence numbers

Explanation: The Three-Way Handshake in TCP is used to synchronize sequence numbers and establish a connection between client and server.

- 9. Which TCP algorithm adjusts the size of the transmission window based on network conditions?
- a) Silly Window Syndrome
- b) Flow control
- c) Variable window size
- d) Three-Way Handshake

Answer: c) Variable window size

Explanation: The Variable window size in TCP adjusts the size of the transmission window

based on network conditions to optimize data transfer.

- 10. Which TCP algorithm helps to avoid unnecessary retransmissions of data?
- a) Silly Window Syndrome
- b) Flow control
- c) Timeout and Retransmission
- d) Three-Way Handshake

Answer: c) Timeout and Retransmission

Explanation: The Timeout and Retransmission algorithm in TCP helps to avoid unnecessary retransmissions of data by detecting lost packets and retransmitting them after a timeout period.

- 11. Which protocol is commonly used for real-time communication applications such as VoIP and video streaming?
- a) TCP
- b) UDP
- c) BGP
- d) OSPF

Answer: b) UDP

Explanation: User Datagram Protocol (UDP) is commonly used for real-time communication applications due to its lower overhead and faster transmission speed compared to TCP.

- 12. What is the primary advantage of UDP over TCP for certain types of applications?
- a) Guaranteed delivery of packets
- b) Connection-oriented communication
- c) Lower overhead and faster transmission speed
- d) Support for flow control

Answer: c) Lower overhead and faster transmission speed

Explanation: UDP has lower overhead and faster transmission speed compared to TCP, making it suitable for applications where timely delivery is prioritized over reliability.

- 13. Which TCP variant introduced the Selective Acknowledgment (SACK) mechanism for improving performance?
- a) Tahoe
- b) Reno
- c) Silly Window Syndrome
- d) Flow control

Answer: b) Reno

Explanation: TCP Reno introduced the Selective Acknowledgment (SACK) mechanism to improve performance by allowing the receiver to acknowledge out-of-order packets.

- 14. What does TCP's Synchronization mechanism ensure?
- a) Secure data transmission
- b) Accurate sequence number tracking
- c) Efficient use of network bandwidth
- d) Real-time communication

Answer: b) Accurate sequence number tracking

Explanation: TCP's Synchronization mechanism ensures accurate sequence number tracking between sender and receiver for reliable data transmission.

- 15. Which UDP header field is used for checksum verification?
- a) Source port
- b) Destination port
- c) Length

d) Checksum

Answer: d) Checksum

Explanation: The checksum field in the UDP header is used for verifying the integrity of the

UDP packet.

16. In TCP, what is the purpose of flow control?

- a) To synchronize sequence numbers
- b) To avoid unnecessary retransmissions
- c) To manage congestion
- d) To regulate the flow of data between sender and receiver

Answer: d) To regulate the flow of data between sender and receiver

Explanation: Flow control in TCP regulates the flow of data between sender and receiver to ensure efficient transmission without overwhelming the receiver.

- 17. Which protocol is commonly used for routing within a single autonomous system?
- a) BGP
- b) OSPF
- c) RIP
- d) TCP

Answer: b) OSPF

Explanation: OSPF (Open Shortest Path First) is commonly used for routing within a single autonomous system as an Interior Gateway Protocol.

- 18. What is the purpose of TCP's Silly Window Syndrome avoidance mechanism?
- a) To synchronize sequence numbers
- b) To regulate the flow of data
- c) To prevent small segments from being transmitted inefficiently

d) To manage congestion control

Answer: c) To prevent small segments from being transmitted inefficiently Explanation: TCP's Silly Window Syndrome avoidance mechanism prevents small segments from being transmitted inefficiently by delaying the transmission until a sufficient amount of data is available.

- 19. Which TCP variant introduced the concept of Fast Retransmit?
- a) Tahoe
- b) Reno
- c) SACK
- d) Flow control

Answer: b) Reno

Explanation: TCP Reno introduced the concept of Fast Retransmit to quickly retransmit lost packets upon the receipt of duplicate acknowledgments.

- 20. Which UDP field indicates the length of the UDP datagram including the header?
- a) Source port
- b) Destination port
- c) Length
- d) Checksum

Answer: c) Length

Explanation: The length field in the UDP header indicates the length of the UDP datagram including the header.

- 21. Which TCP algorithm adjusts the transmission rate based on network congestion?
- a) Silly Window Syndrome
- b) Flow control

- c) Congestion control
- d) Three-Way Handshake

Answer: c) Congestion control

Explanation: The Congestion control algorithm in TCP adjusts the transmission rate based on network congestion to avoid network congestion collapse.

- 22. Which protocol is responsible for determining the best path to a destination network within an autonomous system?
- a) BGP
- b) OSPF
- c) RIP
- d) TCP

Answer: b) OSPF

Explanation: OSPF (Open Shortest Path First) is responsible for determining the best path to a destination network within an autonomous system.

- 23. What is the primary function of BGP's UPDATE message?
- a) Advertising new routes
- b) Establishing connections
- c) Synchronizing sequence numbers
- d) Managing congestion control

Answer: a) Advertising new routes

Explanation: BGP's UPDATE message is primarily used for advertising new routes to neighboring routers.

- 24. Which TCP variant introduced the concept of Explicit Congestion Notification (ECN)?
- a) Tahoe

- b) Reno
- c) SACK
- d) Flow control

Answer: b) Reno

Explanation: TCP Reno introduced the concept of Explicit Congestion Notification (ECN) to provide early notification of network congestion to sender and receiver.

- 25. What does TCP's Flow Control mechanism aim to prevent?
- a) Network congestion
- b) Packet loss
- c) Slow transmission rates
- d) Receiver buffer overflow

Answer: d) Receiver buffer overflow

Explanation: TCP's Flow Control mechanism aims to prevent receiver buffer overflow by regulating the flow of data from sender to receiver.

- 26. Which TCP header field indicates the size of the data in the TCP segment?
- a) Source port
- b) Destination port
- c) Sequence number
- d) Data offset

Answer: d) Data offset

Explanation: The data offset field in the TCP header indicates the size of the data in the TCP segment.

- 27. What is the primary purpose of UDP's Message Encapsulation?
- a) Ensuring data integrity

- b) Establishing connections
- c) Regulating flow control
- d) Adding a UDP header to the data

Answer: d) Adding a UDP header to the data

Explanation: UDP's Message Encapsulation involves adding a UDP header to the data before

transmission over the network.

- 28. Which TCP variant introduced the concept of Time-Based Retransmission?
- a) Tahoe
- b) Reno
- c) SACK
- d) Flow control

Answer: a) Tahoe

Explanation: TCP Tahoe introduced the concept of Time-Based Retransmission to retransmit lost packets after a certain timeout period.

- 29. In BGP, what is the function of the KEEPALIVE message?
- a) Advertising new routes
- b) Establishing connections
- c) Monitoring the liveliness of the connection
- d) Negotiating parameters for the connection

Answer: c) Monitoring the liveliness of the connection

Explanation: In BGP, the KEEPALIVE message is used to monitor the liveliness of the

connection between BGP peers.

- 30. What is the purpose of the TCP header's Urgent Pointer field?
- a) To indicate the end of the data segment

- b) To specify urgent data requiring immediate attention
- c) To synchronize sequence numbers
- d) To negotiate window size

Answer: b) To specify urgent data requiring immediate attention Explanation: The Urgent Pointer field in the TCP header is used to specify urgent data requiring immediate attention by the receiver.

Related posts:

- 1. Introduction to Information Security
- 2. Introduction to Information Security MCQ
- 3. Introduction to Information Security MCQ
- 4. Symmetric Key Cryptography MCQ
- 5. Asymmetric Key Cryptography MCQ
- 6. Authentication & Integrity MCQ
- 7. E-mail, IP and Web Security MCQ