- 1. Which of the following best describes the z-transform?
- A) A method for converting continuous-time signals into discrete-time signals
- B) A mathematical tool for analyzing discrete-time systems in the frequency domain
- C) A technique for transforming linear time-invariant systems into state-space representations
- D) A process for converting digital signals into analog signals

Answer: B) A mathematical tool for analyzing discrete-time systems in the frequency domain

Explanation: The z-transform is primarily used for analyzing discrete-time signals and systems in the frequency domain, similar to how the Laplace transform is used for continuous-time signals and systems.

- 2. What property of the z-transform allows for the analysis of linear time-invariant systems?
- A) Linearity
- B) Time-invariance
- C) Causality
- D) Stability

Answer: A) Linearity

Explanation: Linearity is a fundamental property of the z-transform that allows for the analysis of linear time-invariant systems, enabling the use of superposition and convolution in the frequency domain.

3. Which type of z-transform representation involves the ratio of two polynomials?

- A) Direct z-transform
- B) Inverse z-transform
- C) Rational z-transform
- D) Impulse z-transform

Answer: C) Rational z-transform

Explanation: Rational z-transforms involve expressing the z-transform of a sequence as the ratio of two polynomials in z.

- 4. What is the purpose of inverting the z-transform?
- A) To convert discrete-time signals into continuous-time signals
- B) To analyze the stability of discrete-time systems
- C) To recover the original discrete-time sequence from its z-transform
- D) To convert analog signals into digital signals

Answer: C) To recover the original discrete-time sequence from its z-transform

Explanation: Inverting the z-transform allows us to recover the original discrete-time sequence from its frequency domain representation.

- 5. How are linear time-invariant systems analyzed in the z-domain?
- A) By convolution
- B) By differentiation
- C) By integration
- D) By substitution

Answer: A) By convolution

Explanation: In the z-domain, linear time-invariant systems are typically analyzed using convolution, similar to how they are analyzed in the time domain.

6. Which graphical representation is commonly used for analyzing digital networks in the z-domain?

- A) Phase diagram
- B) Bode plot
- C) Block diagram
- D) Nyquist plot

Answer: C) Block diagram

Explanation: Block diagrams are commonly used to represent and analyze digital networks in the z-domain, illustrating the flow of signals through various components.

- 7. In the context of digital networks, what does a signal flow graph represent?
- A) The frequency response of the system
- B) The stability of the system
- C) The flow of signals through the system
- D) The phase shift of the system

Answer: C) The flow of signals through the system

Explanation: A signal flow graph in the context of digital networks represents the flow of

The z-Transformmcqs

signals through different components of the system, aiding in the analysis of signal

processing.

8. Which mathematical representation is often used for analyzing linear time-invariant

systems in the z-domain?

A) Vector representation

B) Matrix representation

C) Scalar representation

D) Tensor representation

Answer: B) Matrix representation

Explanation: Matrix representation is commonly used for analyzing linear time-invariant

systems in the z-domain, particularly in the context of state-space representations and

system equations.

9. Which property of the z-transform ensures the preservation of signal causality?

A) Region of convergence (ROC)

B) Linearity

C) Time-invariance

D) Stability

Answer: A) Region of convergence (ROC)

Explanation: The region of convergence (ROC) in the z-transform domain plays a crucial role

in ensuring the preservation of signal causality, indicating where the transform converges

and hence ensuring that only causal signals are transformed.

10. What does the matrix representation of a linear time-invariant system in the z-domain consist of?

- A) Coefficients of the system's transfer function
- B) Eigenvalues of the system matrix
- C) State variables and their derivatives
- D) Zeros and poles of the system

Answer: C) State variables and their derivatives

Explanation: The matrix representation of a linear time-invariant system in the z-domain typically consists of state variables and their derivatives, forming a set of differential or different equations representing the system's dynamics.