- 1. Which type of heat exchanger configuration offers the highest temperature difference between the hot and cold fluids?
- a) Parallel flow
- b) Counter flow
- c) Cross flow
- d) Double pipe

Answer: b) Counter flow

Explanation: In counter flow heat exchangers, the hot and cold fluids flow in opposite directions, maximizing the temperature gradient along the length of the exchanger, resulting in higher overall heat transfer.

- 2. What is the purpose of an evaporator in a refrigeration system?
- a) To transfer heat from the surroundings to the refrigerant
- b) To remove moisture from the air
- c) To convert liquid refrigerant into vapor
- d) To increase the pressure of the refrigerant

Answer: c) To convert liquid refrigerant into vapor

Explanation: The evaporator absorbs heat from the surroundings to vaporize the liquid refrigerant, cooling the surroundings in the process.

- 3. Which factor affects the overall heat transfer coefficient of a heat exchanger?
- a) Fouling factors
- b) Length of the exchanger

- c) Diameter of the tubes
- d) Material of construction

Answer: a) Fouling factors

Explanation: Fouling factors account for the decrease in heat transfer efficiency due to the accumulation of deposits on the heat transfer surface.

- 4. What does LMTD stand for in the context of heat exchangers?
- a) Longitudinal Mean Temperature Difference
- b) Linear Mean Thermal Dispersion
- c) Logarithmic Mean Temperature Difference
- d) Localized Mean Thermal Distribution

Answer: c) Logarithmic Mean Temperature Difference

Explanation: LMTD is a logarithmic average of the temperature differences between the hot and cold fluids at the inlet and outlet of a heat exchanger.

- 5. Which method is commonly used for the analysis of heat exchangers?
- a) Finite Element Method
- b) Boundary Element Method
- c) NTU Method
- d) CFD Analysis

Answer: c) NTU Method

Explanation: NTU (Number of Transfer Units) method is widely used for analyzing the

performance of heat exchangers.

- 6. What parameter is used to evaluate the effectiveness of a heat exchanger?
- a) Thermal conductivity
- b) Fouling resistance
- c) Overall heat transfer coefficient
- d) Effectiveness

Answer: d) Effectiveness

Explanation: Effectiveness measures the actual heat transfer achieved by a heat exchanger compared to the maximum possible heat transfer.

- 7. Which law governs the rate of diffusion in mass transfer?
- a) Newton's Law of Cooling
- b) Ohm's Law
- c) Fick's Law
- d) Boyle's Law

Answer: c) Fick's Law

Explanation: Fick's Law describes the diffusion of one substance through another and states that the rate of diffusion is proportional to the concentration gradient.

- 8. What is equimolar diffusion?
- a) Diffusion of gases with equal molar masses
- b) Diffusion of gases with equal partial pressures
- c) Diffusion of gases with equal concentrations
- d) Diffusion of gases with equal diffusion coefficients

Answer: a) Diffusion of gases with equal molar masses

Explanation: Equimolar diffusion occurs when gases with equal molar masses diffuse through each other at equal rates.

- 9. What does the diffusion coefficient represent in mass transfer?
- a) The rate of diffusion of a substance through a medium
- b) The concentration gradient of a substance
- c) The temperature gradient of a substance
- d) The pressure difference of a substance

Answer: a) The rate of diffusion of a substance through a medium Explanation: The diffusion coefficient quantifies how quickly a substance diffuses through a medium under a given set of conditions.

- 10. How is mass transfer analogous to heat transfer?
- a) Both involve the movement of energy from a high concentration to a low concentration
- b) Both follow the laws of thermodynamics
- c) Both depend on the specific heat capacity of the substances involved
- d) Both are driven by a gradient (concentration or temperature)

Answer: d) Both are driven by a gradient (concentration or temperature)

Explanation: Both mass transfer and heat transfer involve the movement of a substance from regions of high concentration or temperature to regions of low concentration or temperature.

11. In which scenario does diffusion of vapor in a stationary medium occur?

- a) Boiling of water
- b) Condensation of steam
- c) Diffusion of perfume in air
- d) Absorption of gas into a liquid

Answer: c) Diffusion of perfume in air

Explanation: Diffusion of vapor in a stationary medium occurs when vapor molecules spread out evenly through the medium, such as the diffusion of perfume in air.

- 12. What does NTU stand for in the context of heat exchanger analysis?
- a) Number of Thermal Units
- b) Number of Transfer Units
- c) Non-Thermal Utilization
- d) Network Transfer Understanding

Answer: b) Number of Transfer Units

Explanation: NTU is a dimensionless parameter used in heat exchanger analysis to quantify the size of the heat exchanger relative to the heat capacity rate of the fluid streams.

- 13. Which type of flow configuration in a heat exchanger results in the lowest LMTD?
- a) Parallel flow
- b) Counter flow
- c) Cross flow
- d) Double pipe

Answer: a) Parallel flow

Explanation: In parallel flow heat exchangers, the temperature difference between the two fluids decreases continuously along the length of the exchanger, resulting in the lowest LMTD.

- 14. What is the primary function of a condenser in a refrigeration cycle?
- a) To compress the refrigerant
- b) To convert vapor refrigerant into liquid
- c) To remove heat from the refrigerant
- d) To regulate the pressure of the refrigerant

Answer: b) To convert vapor refrigerant into liquid

Explanation: The condenser removes heat from the vapor refrigerant, causing it to condense into liquid form.

- 15. How does fouling affect the performance of a heat exchanger?
- a) It increases the overall heat transfer coefficient
- b) It decreases the overall heat transfer coefficient
- c) It has no effect on the overall heat transfer coefficient
- d) It increases the efficiency of the heat exchanger

Answer: b) It decreases the overall heat transfer coefficient

Explanation: Fouling reduces the heat transfer efficiency of a heat exchanger by insulating the heat transfer surfaces and increasing the thermal resistance.

Related posts:

- 1. Introduction of IC Engine MCQs
- 2. Combustion in SI engines MCQs
- 3. Combustion in CI Engines MCQs
- 4. Fuel MCQs
- Supercharging & Turbo charging MCQs
- 6. Fundamental Aspects of Vibrations MCQs
- 7. Damped Free Vibrations: Viscous damping MCQs
- 8. Harmonically excited Vibration MCQS
- 9. Systems With Two Degrees of Freedom MCQs
- 10. Noise Engineering Subjective response of sound MCQs
- 11. Mechatronics Overview and Applications MCQs
- 12. REVIEW OF TRANSDUCERS AND SENSORS MCQs
- 13. MICROPROCESSOR ARCHITECTURE MCQs
- 14. Electrical and Hydraulic Actuators MCQs
- 15. SINGLE CONDITIONING MCQs
- 16. Dynamics of Engine Mechanisms MCQs
- 17. Governor Mechanisms MCQs
- 18. Balancing of Inertia Forces and Moments in Machines MCQs
- 19. Friction MCQs
- 20. Brakes MCQs
- 21. Introduction Automobile Fuels MCQs
- 22. Liquid alternative fuels MCQs
- 23. Gaseous Fuels MCQs
- 24. Automobile emissions MCQS
- 25. Emissions Norms & Measurement MCOs

- 26. Method study MCQs
- 27. Work measuremen MCQs
- 28. Job Contribution Evaluation MCQs
- 29. Human factor engineering MCQs
- 30. Display systems and anthropometric datA MCQs
- 31. Quality Management MCQs
- 32. Quality Management process MCQs
- 33. SQC-Control charts MCQs
- 34. Process diagnostics MCQs
- 35. Process improvement MCQs
- 36. Finite Element Method MCQs
- 37. Element Types and Characteristics MCQs
- 38. Assembly of Elements and Matrices MCQs
- 39. Higher Order and Isoparametric Elements MCQs
- 40. Static & Dynamic Analysis MCQs
- 41. Refrigeration & Cooling MCQs
- 42. Vapour compression system MCQs
- 43. Vapour absorption system MCQs
- 44. Psychometric MCQs
- 45. Air conditioning MCQS
- 46. Chassis & Body Engg MCQs
- 47. Steering System MCQs
- 48. Transmission System MCQs
- 49. Suspension system MCQs
- 50. Electrical and Control Systems MCQS
- 51. Emission standards and pollution control MCQs
- 52. Tribology and Surface Mechanics MCQs

- 53. Friction MCQs: Concepts and Analysis
- 54. Understanding Wear Mechanisms MCQs
- 55. Lubricants and Lubrication Standards MCQS
- 56. Nano Tribology MCQs
- 57. Machine Tools MCQs
- 58. Regulation of Speed MCQs
- 59. Design of Metal working Tools MCQs
- 60. Design of Jigs and Fixtures MCQs
- 61. Design of Gauges and Inspection Features MCQs
- 62. Production Systems MCQs
- 63. Work Study MCQs
- 64. Production Planning MCQs
- 65. Production and Inventory Control MCQs
- 66. Productivity MCQs
- 67. DESCRIPTIVE STATISTICS MCQs
- 68. INTRODUCTION TO BIG DATA MCQs
- 69. BIG DATA TECHNOLOGIES MCQs
- 70. Energy Management MCQs
- 71. Energy Audit MCQs
- 72. Material energy balance MCQs
- 73. Monitoring and Targeting MCQs
- 74. Thermal energy management MCQs
- 75. System Concepts MCQs
- 76. Management MCQs
- 77. Marketing MCqs
- 78. Productivity and Operations MCQs
- 79. Entrepreneurship MCQs

- 80. Introduction of MIS MCQs
- 81. Information systems for decision-making MCgs
- 82. System Design Quiz MCQs
- 83. Implementation, Evaluation and Maintenance of the MIS MCQs
- 84. Pitfalls in MIS Development MCQs
- 85. Steam generators and boilers MCQs
- 86. Vapour Cycles MCQs
- 87. Gas Dynamics MCQs
- 88. Air Compressors MCQs
- 89. Nozzles and Condensers MCQs
- 90. Introduction to stress in machine component MCQs
- 91. Shafts MCQS
- 92. Springs MCQs
- 93. Brakes & Clutches MCQs
- 94. Journal Bearing MCQs
- 95. Energy transfer in turbo machines MCQs
- 96. Steam turbines MCQs
- 97. Water turbines MCQs
- 98. Rotary Fans, Blowers and Compressors MCQs
- 99. Power transmitting turbo machines MCQs
- 100. Energy transfer in turbo machines MCQs
- 101. Steam turbines MCQs
- 102. Water turbines MCQS
- 103. Rotary Fans, Blowers and Compressors MCQs
- 104. Power transmitting turbo machines MCQs
- 105. Introduction to Computer Engineering MCQs
- 106. Types of Analysis MCQS

- 107. Heat Transfer and Conduction MCQs
- 108. Extended Surfaces (fins) MCQs
- 109. Convection MCQs
- 110. Thermal Radiation & Boiling/Condensation MCQs
- 111. Mechanical processes MCQs
- 112. Electrochemical and chemical metal removal processes MCQs
- 113. Thermal metal removal processes MCQs
- 114. Rapid prototyping fabrication methods MCQs
- 115. Technologies of micro fabrication MCQs
- 116. Power Plant Engineering MCQs
- 117. Fossil fuel steam stations MCQs
- 118. Nuclear Power Station MCQs
- 119. Hydro-Power Station MCQs
- 120. Power Station Economics MCQs
- 121. Design of Belt, Rope and Chain Drives MCQS
- 122. Spur and Helical Gears MCQs
- 123. Bevel Gears MCQs
- 124. Design of I.C. Engine Components MCQs
- 125. Linear system and distribution models MCQs
- 126. Supply chain (SCM) MCQs
- 127. Inventory models MCQs
- 128. Queueing Theory & Game Theory MCQs
- 129. Project Management & Meta-heuristics MCQs
- 130. Overview of Systems Engineering MCQS
- 131. Structure of Complex Systems MCQs
- 132. Concept Development and Exploration MCQs
- 133. Engineering Development MCQs

- 134. Basic Concepts & Laws of Thermodynamics MCQs
- 135. Properties of Steam MCQs
- 136. Air standard cycles MCQS
- 137. Fuels & combustion MCQs
- 138. Materials Science MCQs
- 139. Alloys and Materials MCQs
- 140. Metal Heat Treatment MCQs
- 141. Material Testing and Properties MCQs
- 142. Chemical Analysis of Metal Alloys MCQs
- 143. Stress and strain MCQs
- 144. Bending MCQs
- 145. Torsion in shafts MCQs
- 146. Theories of failures MCQs
- 147. Columns & struts MCQs
- 148. Manufacturing Process MCQs