EasyExamNotes.com

Time complexity classes

Time complexity classes provide a framework for analyzing and categorizing the efficiency of
algorithms based on their running time as a function of the input size.

Some common time complexity classes and their descriptions:

1. Constant Time: O(1)

 The algorithm’s running time is constant, regardless of the input size.
» The algorithm takes the same amount of time to execute, regardless of the input’s
magnitude.

2. Logarithmic Time: O(log n)

» The algorithm’s running time increases logarithmically with the input size.

e As the input size increases, the running time grows, but at a decreasing rate.

« Algorithms with logarithmic time complexity often divide the input in half at each step,
such as binary search on a sorted array.

3. Linear Time: O(n)

e The algorithm’s running time increases linearly with the input size.

e As the input size grows, the running time grows at the same rate.

 Algorithms with linear time complexity typically iterate once through the entire input,
such as linear search in an unsorted list.

4. Linearithmic Time: O(n log n)

e The algorithm’s running time increases in proportion to n multiplied by the logarithm

EasyExamNotes.com Time complexity classes



EasyExamNotes.com

Time complexity classes

of n.
* It is commonly seen in efficient sorting algorithms like merge sort and quicksort.
* Algorithms with linearithmic time complexity have a better performance than
quadratic time complexity but worse than linear time complexity.

5. Quadratic Time: O(n?)

* The algorithm’s running time increases quadratically with the input size.

* As the input size increases, the running time grows exponentially.

 Algorithms with quadratic time complexity typically involve nested loops, such as
bubble sort and selection sort.

6. Exponential Time: O(2")

e The algorithm’s running time grows exponentially with the input size.

e As the input size increases, the running time grows very rapidly.

 Algorithms with exponential time complexity are highly inefficient and impractical for
large inputs, such as generating all subsets or permutations of a set.

EasyExamNotes.com Time complexity classes


https://easyexamnotes.com/bubble-sort/
https://easyexamnotes.com/selection-sort/

