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What is Intermediate Code Generation?

Imagine you're building a house. Before you can start building, you need a blueprint, right?
Similarly, in the process of translating a high-level programming language (like Python or
C++) into machine code that a computer can execute, we need a blueprint too. This is where
intermediate code generation comes into play.

Intermediate code generation is like creating a rough sketch or blueprint of the program,
called intermediate code, which captures the essential structure and operations of the
program. It happens after the program’s meaning and structure have been analyzed
(semantic phase) but before the final machine code is generated.

Benefits of Intermediate Code:
1. Machine Independence:

Think of intermediate code as a universal language understood by different types of
computers. Just like how architects use a common blueprint language regardless of the
construction site, compilers can generate intermediate code that’s not tied to any specific
computer architecture. This makes it easier to adapt the compiler for different processors or
platforms.

2. Proximity to Target Machine:

While high-level source code is human-readable and understandable, it's quite far from the
language that computers understand directly. Intermediate code, however, is closer to the
low-level instructions that computers can execute. This closeness makes it simpler to
translate into the final machine code that the computer executes.
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3. Optimization Opportunities:

Intermediate code provides a middle ground where optimization techniques can be applied
effectively. Just like how an architect might refine a blueprint to make the house more
efficient or cost-effective, compilers can optimize intermediate code to improve program
performance or reduce memory usage. These optimizations are often independent of the
specific machine, making them more widely applicable.

4. Integration with Parsing:

Intermediate code generation is often seamlessly integrated into the parsing process. This
means that as the compiler parses the source code (like understanding the sentences in a
language), it simultaneously generates the intermediate code (like drawing the blueprint).
This integration streamlines the compilation process and makes it more efficient.
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