Ordinary Least Squares (OLS) estimation is a statistical method used to estimate the coefficients of a linear regression model.

In linear regression, we aim to find the best-fitting line (or hyperplane in the case of multiple linear regression) that represents the relationship between the dependent variable and one or more independent variables.

OLS is a way to determine the values of the coefficients that provide the closest match between the model's predictions and the observed data.

Related posts:

- 1. What is Machine Learning?
- 2. Types of Machine Learning?
- 3. Applications of Machine Learning
- 4. Data Preprocessing
- 5. Data Cleaning
- 6. Handling Missing Data
- 7. Feature Scaling
- 8. Labeled data in Machine learning
- 9. Difference between Supervised vs Unsupervised vs Reinforcement learning
- 10. Machine learning algorithms for Big data
- 11. Difference between Supervised vs Unsupervised vs Reinforcement learning
- 12. What is training data in Machine learning

- 13. Scalar in Machine Learning
- 14. Scalars in Loss Functions | Machine Learning
- 15. Linear Algebra for Machine Learning Practitioners
- 16. Supervised Learning
- 17. Top Interview Questions and Answers for Supervised Learning
- 18. Define machine learning and explain its importance in real-world applications.
- 19. Differences Between Machine Learning and Artificial Intelligence
- 20. Machine Learning works on which type of data?
- 21. What is target variable and independent variable in machine learning
- 22. Machine Learning Scope and Limitations
- 23. What is Regression in Machine learning
- 24. Statistics and linear algebra for machine learning
- 25. Finding Machine Learning Datasets
- 26. What is hypothesis function and testing
- 27. Explain computer vision with an appropriate example
- 28. Explain Reinformcement learning with an appropriate exaple
- 29. Reinforcement Learning Framework
- 30. Data augmentation
- 31. Normalizing Data Sets in Machine Learning
- 32. Machine learning models
- 33. Unsupervised machine learning
- 34. Neural Network in Machine Learning
- 35. Recurrent neural network
- 36. Support Vector Machines
- 37. Long short-term memory (LSTM) networks
- 38. Convolutional neural network
- 39. How to implement Convolutional neural network in Python

- 40. What is MNIST?
- 41. What does it mean to train a model on a dataset?
- 42. Can a textual dataset be used with an openCV?
- 43. Name some popular machine learning libraries.
- 44. Introduction to Machine Learning
- 45. Some real time examples of machine learning
- 46. Like machine learning, what are other approaches in Al?
- 47. Statistics and Linear Algebra for Machine Learning?
- 48. What is convex optimization in simple terms?
- 49. What is data visualization in simple terms?
- 50. What is data preprocessing in machine learning?
- 51. What are data distributions, and why are they important?
- 52. What is data augmentation in machine learning?
- 53. What is labelled and unlabelled data set in Machine Learning?
- 54. What is neural networks in Machine Learning?
- 55. How are convolutional neural networks related to supervised learning?
- 56. Fundamentals of Neural Networks
- 57. Linearity vs non-linearity in Machine Learning?
- 58. Machine Learning Short Exam Notes
- 59. Machine Learning Short Exam Notes Quick and Easy Revision Guide