What is the time complexity of given function,

$$f(n) = 5n^2 + 3n + 4$$
?

Solution:

Given,

 $f(n)=5n^2+3n+4$

- $5n^2 + 3n + 4 > = 5n^2 + 3n + 4$ for all n > = 1
- $5n^2 + 3n + 4 > = 5n^2 + 3n$ for all n > = 1
- $5n^2 + 2n + 4 > = 5n^2$ for all n > = 1
- $f(n) > = 5n^2$ for all n > = 1

Compare with the standard Big omega notation equation that is,

f(n) > = c*g(n) for all $n_0 > = n$

So here c = 5, $g(n) = n^2$ and $n_0 = 1$

- $f(n)=\Omega(g(n))$
- $f(n) = \Omega(n^2)$