What is the time complexity of given function,
$\mathrm{f}(\mathrm{n})=5 \mathrm{n}^{2}+3 \mathrm{n}+4$?
Solution:

Given,

$$
\begin{aligned}
f(n)= & 5 n^{2}+3 n+4 \\
& \text { - } 5 n^{2}+3 n+4>=5 n^{2}+3 n+4 \text { for all } n>=1 \\
& \text { - } 5 n^{2}+3 n+4>=5 n^{2}+3 n \text { for all } n>=1 \\
& \text { - } 5 n^{2}+2 n+4>=5 n^{2} \text { for all } n>=1 \\
& \text { - } f(n)>=5 n^{2} \text { for all } n>=1
\end{aligned}
$$

Compare with the standard Big omega notation equation that is,
$\mathrm{f}(\mathrm{n})>=\mathrm{c}^{*} \mathrm{~g}(\mathrm{n})$ for all $\mathrm{n}_{0}>=\mathrm{n}$
So here $\mathrm{c}=5, \mathrm{~g}(\mathrm{n})=\mathrm{n}^{2}$ and $\mathrm{n}_{0}=1$

- $\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$
- $\mathrm{f}(\mathrm{n})=\Omega\left(\mathrm{n}^{2}\right)$

