What is the time complexity of, $f(n)=n 3+n 2+n+4$

What is the time complexity of given function,
$f(n)=n^{3}+n^{2}+n+4$?

Solution:

Given,
$f(n)=n^{3}+n^{2}+n+4$

- $f(n)>=n^{3}+n^{2}+n+4$
- $f(n)>=n^{3}+n^{2}+n$, for all $n>=1$
- $f(n)>=n^{3}+n^{2}$, for all $n>=1$
- $f(n)>=n^{3}$, for all $n>=1$

Compare with the standard Big omega notation equation that is,
$\mathrm{f}(\mathrm{n})>=\mathrm{c}^{*} \mathrm{~g}(\mathrm{n})$, for all $\mathrm{n} 0>=\mathrm{n}$
Here,
$g(n)=n 3$,
$\mathrm{c}=1$
$\mathrm{n}_{0}=1$

- $f(n)=\Omega(g(n))$
- $f(n)=\Omega(n 3)$

