What is the time complexity of given function?

$\mathrm{f}(\mathrm{n})=\mathrm{n}+4$.

Solution:

Given,
$\mathrm{f}(\mathrm{n})=\mathrm{n}+4$

- $\mathrm{n}+4>=\mathrm{n}+4$
- $\mathrm{n}+4>=\mathrm{n}$, where $\mathrm{n}>=1$
- $\mathrm{n}+4>=\mathrm{n}$, for all $\mathrm{n}>=1$
$\mathrm{f}(\mathrm{n})>=\mathrm{n}$, for all $\mathrm{n}>=1$

Compare with the standard Big omega notation equation that is,
$\mathrm{f}(\mathrm{n})>=\mathrm{c}^{*} \mathrm{~g}(\mathrm{n})$, for all $\mathrm{n}_{0}>=\mathrm{n}$

Here,

$$
\begin{aligned}
& \mathrm{g}(\mathrm{n})=\mathrm{n}, \\
& \mathrm{c}=1 \\
& \mathrm{n} 0=1 \\
& \quad \text { - } \mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n})) \\
& \quad \text { • } \mathrm{f}(\mathrm{n})=\Omega(\mathrm{n})
\end{aligned}
$$

